•••••••••••••ЭЛЕКТРОТЕХНИКА

УДК 621.311.426-213.34

К.Н. Маренич /д.т.н./

ГОУ ВПО «Донецкий национальный технический университет» (Донецк) И.Я. Чернов /к.т.н./, Е.В. Золотарев ГУ «Научно-исследовательский институт взрывобезопасного электрооборудования» (Донецк)

МОДЕЛИРОВАНИЕ ПРОЦЕССОВ ТЕПЛООБМЕНА ВНУТРИ ОБОЛОЧКИ ВЗРЫВОБЕЗОПАСНОЙ ТРАНСФОРМАТОРНОЙ ПОДСТАНЦИИ ТИПА КТПВ-1000 МЕТОДОМ КОНЕЧНЫХ ЭЛЕМЕНТОВ

На основании применения метода конечных элементов обоснована и проанализирована структура объемной модели тепловых процессов в шахтной участковой комплектной трансформаторной подстанции высокой мощности, что позволило учесть неравномерности объемного тепловыделения и уточнить тепловое состояние подстанции и отдельных ее компонентов. Обоснована область применения данного способа моделирования.

Ключевые слова: взрывобезопасная трансформаторная подстанция, математическая модель, тепловое поле.

Постановка проблемы

Одним из ключевых вопросов при разработке современных шахтных комплектных трансформаторных подстанций (КТП), в особенности повышенных мощностей (1000 кВ·А и выше), является вопрос обеспечения эффективного охлаждения их активной части (АЧ). Превышение температуры АЧ КТП выше допустимой – основная причина, ограничивающая их мощность.

Изучение процессов теплообмена внутри оболочки взрывобезопасной КТП на стадии предварительного проектирования позволит решить задачу оценки теплового поля с учетом влияния таких факторов:

 – собственных конструктивных и электромагнитных особенностей активной части;

 – конструктивных особенностей взрывозащищенной оболочки;

– учета различных режимов работы КТП (определение допустимой продолжительности аварийных перегрузок).

Решение этой задачи исключительно экспериментальным путем требует весьма значительных затрат времени и материальных средств, связанных с изготовлением опытных образцов и проведением их длительных исследований. Поэтому разработка математической модели процессов нагревания и охлаждения шахтной КТП с учетом влияния всех вышеперечисленных факторов, определяющих перенос процесса оценки теплового поля подстанции из натурной плоскости в виртуальную, является актуальной задачей.

Анализ последних исследований и публикаций

Анализ современных аналитических методов тепловых исследований показывает, что оценку эффективности систем охлаждения шахтной КТП можно выполнить одним из трех способов:

 посредством инженерного расчета на базе
эмпирических, опытно установленных зависимостей для конкретных конструкций;

 путем анализа эквивалентных тепловых схем замещения методом вариации параметров в любом из доступных SPICE-вычислителей, например, в симуляторе LTspice;

– численным моделированием, основанным на методе конечных элементов (МКЭ), с применением программных продуктов Ansys, Comsol Multiphysics, SolidWorks и др.

Цель (задачи) исследования

Целью статьи является обоснование корректного способа математического моделирования процесса конвективного теплообмена внутри оболочки шахтной подстанции, обеспечивающего получение точной информации о ее тепловом состоянии, включая ее функциональные элементы в стационарном и переходных режимах с учетом совокупности возмущающих факторов в реальных диапазонах их изменения.

Для достижения этой цели предполагается воспользоваться методологией конечных элементов (МКЭ) в среде SolidWorks Flow Simulation и выполнить сравнительный анализ полученных результатов с данными экспериментальных тепловых исследований

ВЕСТНИК ДонНТУ •••••

подстанции типа КТПВ-1000/6-1,2, опубликованных в [1...5].

Основной материал исследования

Метод конечных элементов основан на представлении реальной конструкции объекта ее 3D-моделью, которая разбивается на некоторое число малых подобластей, в каждой из которых произвольно выбирается вид аппроксимирующей функции решаемого дифференциального уравнения, что позволяет эффективно оценить влияние различных конструктивных, технологических, теплофизических и эксплуатационных факторов на тепловой режим конструкции [6,7].

В соответствии с этим методом представим шахтную трансформаторную подстанцию в виде 3D-модели, состоящей из семи однородных тел (рис. 1). Этими телами являются: обмотки высшего (BH) и низшего (HH) напряжений, электроизоляционные цилиндры, магнитопровод, ярмовые балки, воздух внутри взрывонепроницаемой оболочки и сама оболочка КТП. Все расчетные составные части модели соответствуют подстанции типа КТПВ-1000/6-1,2. Источником теплового потока в процессе работы взрывозащищенной КТП являются объемные тепловыделения в материалах, которые для номинального режима нагрузки определяются по формуле:

$$\Sigma Q = \Sigma P_{KT\Pi} = P_{XX} + P_{K3} + P_{DOF}$$
 , BT,

где $\Sigma P_{KT\Pi}$ – суммарные потери активной мощности при работе КТП, Вт; P_{XX} , P_{K3} – потери мощности холостого хода и короткого замыкания АЧ, Вт; $P_{ДOE}$ – добавочные потери, возникающие в результате воздействия вихревых токов в металлических конструкционных элементах КТП (ярмовые балки, стяжные шпильки АЧ и др.), а также непосредственно в стальной взрывонепроницаемой оболочке подстанции.

Очевидно, что весь тепловой поток, возникающий в указанных выше источниках, должен быть отдан внешней поверхностью оболочки в окружающее воздушное пространство, т.е.:

$$\Sigma Q = Q_{OTA}$$
, BT

где Q_{OTA} – тепловой поток, отдаваемый внешней поверхностью оболочки КТП в окружающее пространство, Вт.

Для уменьшения объема вычислений из модели целесообразно исключить конструкционные элементы, не оказывающие существенного влияния на характер теплообмена (фаски, технологические отверстия, ребра жесткости, элементы крепления АЧ и обмоток и др.). Модель выполнена в программном комплексе SolidWorks с использованием дополнения Flow Simulation.

При составлении расчетной математической модели введем ряд допущений:

 – коэффициенты теплоотдачи составных (твердых) тел модели не зависят от температуры и имеют характеристики, представленные в таблице 1;

 – распределительные устройства КТП в рассеивании тепла участия не принимают;

 – добавочные потери, возникающие в конструкционных элементах КТП, могут не учитываться;

 – принимаем, что весь тепловой поток передается внутренней поверхности оболочки только путем конвективного теплообмена.

Математической моделью для поставленной задачи является уравнение теплопередачи при условии теплообмена посредством теплопроводности и конвекции:

$$Q_{y} = \rho \cdot C_{p} \frac{\partial T}{\partial t} + \nabla \cdot (-k\nabla T + \rho \cdot C_{p} \cdot T \cdot \vec{u}),$$

Рис. 1. Упрощенная 3D-модель объекта исследования: 1 – взрывонепроницаемая оболочка; 2 – трубы системы охлаждения; 3 – гофрированная стенка; 4 –магнитопровод; 5 – ярмовые балки; 6 – обмотка НН; 7 – обмотка ВН; 8 – изоляционный цилиндр; 9 – ребра корпуса

Наименование материала	Характеристика			
	Плотность, кг/м ³	Тепло- емкость, Дж/(кг·К)	Тепло- проводность, Вт/(м·К)	Применение в модели
Сталь электротехническая	7800	480	36	Магнитопровод
Медь обмоточная	8900	390	392	Обмотки ВН и НН
Сталь углеродистая конструкционная Ст.3	7850	460	45	Взрывонепроницаемая оболочка Ярмовые балки АЧ
Стеклотекстолит СТЭФ-1	1700	1200	0,3	Электроизоляционный цилиндр

Табл. 1. Характеристика материалов, используемых в расчетной модели

Рис. 2. Срез теплового поля в поперечном сечении фазы В

где ρ – плотность, кг/м³; C_p – удельная теплоемкость при постоянном давлении Дж/(кг·К); T – температура, К; t – время, с; k – коэффициент теплопроводности, Вт/(м·К); \vec{u} – вектор скорости движения воздуха, м/с; Q_y – удельный источник или потребитель теплоты, Вт/м³; ∇ – векторный дифференциальный оператор, компоненты которого являются частными производными по координатам (оператор набла):

$$\nabla = \frac{\partial}{\partial x}\vec{i} + \frac{\partial}{\partial x}\vec{j} + \frac{\partial}{\partial x}\vec{k},$$

где $\vec{i}, \vec{j}, \vec{k}$ – единичные векторы по осям x, y, z соответственно.

Исходные данные для расчета:

1. Источники тепла – обмотки ВН и НН: потери короткого замыкания при 115 °С P_{K3} =6500 Вт; потери холостого хода P_{XX} =2700 Вт;

Соответственно, удельные тепловыделения

в обмотках и магнитопроводе определяем по формулам:

$$Q_{yCu} = \frac{P_{K3} \cdot m_{Cu}}{\rho_{Cu}}, \text{BT/M}^3,$$
$$Q_{yFe} = \frac{P_{XX} \cdot m_{Fe}}{\rho_{Fe}}, \text{BT/M}^3,$$

где m_{Cu} , m_{Fe} — масса меди в обмотках ВН и НН и стали в магнитопроводе соответственно (m_{Cu} = =926,5 кг; m_{Fe} =1902,4 кг) ρ_{Cu} , ρ_{Fe} — плотности соответственно меди и стали магнитопровода (см. табл. 1).

$$Q_{yCu} = 676,6 \text{ BT/M}^3,$$

 $Q_{yFe} = 658,5 \text{ BT/M}^3.$

2. Граничные условия: температура окружающей среды $T_0=293,2$ К; атмосферное давление $P_0=101325$ Па; тепловое условие на внешней стенке оболочки задано коэффициентом теплоотдачи равным $\alpha=7,9$ Вт/(м²·К) [6].

Расчет выполняем для стационарного (установившегося) теплового режима. Результаты расчета представлены на рис. 2...6. На рис. 2, 3 представлен срез теплового поля в поперечном сечении фазы В и продольном сечении подстанции соответственно.

Сравнение полученных градиентов температур с экспериментальными данными показало, что в верхней части оболочки данные в целом близки. Так, над верхним ярмом магнитопровода, напротив фазы В фактическое превышение температуры воздуха составляет 177 °С, тогда как расчетные данные составляют 163 °С (Δ =7,9 %).

Сравнение расчетных и экспериментальных данных превышения температуры внутри осевого канала обмотки НН представлено на рис. 4.

ВЕСТНИК ДонНТУ •••••

В нижней 1/3 части и вверху канала температурное поле имеет минимальную погрешность, а в точке максимального перегрева разница доходит до 20 °C (Δ_{max} =11,6 %).

Особый интерес представляют расчетные данные траекторий движения конвективных потоков воздуха по объему оболочки, с отображением температуры (рис. 5). Исходя из формулы Ньютона-Рихмана:

$$Q = \alpha \cdot (T_v - T_n) \cdot S$$
, BT,

количество теплоты Q, которое отводится от поверхности с площадью S, напрямую зависит от разности температуры воздуха внутри оболочки и температуры на поверхности оболочки [8].

Рис. 3. Срез теплового поля в продольном сечении по центру модели

Рис. 4. График распределения превышения температуры по высоте осевого канала обмотки HH фазы B, при экспериментальных исследованиях и расчете

Вестник Донецкого национального технического университета

ISSN 2518-1653 (online). Интернет: vestnik.donntu.org

Рис. 5. Траектории движения конвективных потоков воздуха по объему оболочки с отображением температуры

Рис. 6. Траектории движения конвективных потоков воздуха по объему оболочки с отображением скорости

Очевидно, что наибольшую эффективность в плане теплообмена имеет верхняя треть оболочки, где разность этих температур максимальна.

На рис. 6 представлен расчет траекторий движения конвективных потоков воздуха по объему оболочки с отображением их скорости. Результаты расчета соотносимы с экспериментальными данными для взрывозащищенных трансформаторов типа ТСВ, где измеренные скорости внутри оболочки находятся в диапазоне 0,2...1,5 м/с [9].

Выводы

Расчет процесса конвективного теплообмена внутри оболочки шахтной КТП, основанный на методе конечных элементов в среде Solid-Works Flow Simulation, может быть использован на стадии эскизного проектирования для предварительной оценки теплового состояния взрывозащищенных трансформаторных подстанций.

Уточнение параметров динамики тепловых процессов в КТП на этапе компьютерного моделирования достигается за счет учета свойств изоляционных и пропиточных материалов, учета неравномерности объемного тепловыделения в обмотках АЧ, учета тепловыделения в монтажных и крепежных элементах конструкции при рассеянии магнитного потока, учета условий теплообмена за счет лучеиспускания, а также учета конвекции хладагента от внешней стенки оболочки в окружающее пространство.

Список литературы

- Сорока, Е.А. Совершенствование системы охлаждения взрывозащищённых трансформаторов на стадии НИР и серийного производства / Е.А. Сорока, Ю.Н. Папазов // Наукові праці ДонНТУ. – 2011. – №10. – С. 167-176.
- Исследование и сравнительный анализ стационарного температурного поля оболочек трансформаторных подстанций типа КТПВ мощностью 1000 и 1250 кВ·А / Е.А. Сорока, Е.В. Золотарев, Е.Н. Калач и др. // Взрывозащищенное электрооборудование: сб. науч. тр. УкрНИИВЭ. Донецк: ООО «Юго-Восток, Лтд», 2005. С. 59-68.
- Исследование теплового состояния и механической прочности корпусов взрывозащищенных комплектных трансформаторных подстанций повышенной мощности / И.Я. Чернов, В.М. Грушко, О.Е. Никитин и др. // Взрывозащищенное электрооборудование: сб. науч. тр. УкрНИИВЭ. Донецк: ООО «АИР», 2009. С. 68-80.
- Чернов, И.Я. Анализ теплового состояния взрывонепроницаемых кожухов трансформаторных подстанций / И.Я. Чернов, В.В. Шилов, Н.В. Бурковская. – Донецк: ООО «Юго-Восток, Лтд», 2005. – С. 72-77.
- Сорока, Е.А. Влияние оболочки взрывозащищенного трансформатора на тепловое состояние его активной части / Взрывозащищенное электрооборудование: сб. науч. тр. УкрНИИВЭ. – Донецк: ООО «АИР», 2009. – С. 81-87.

ВЕСТНИК ДонНТУ

- Иванков, В.Ф. Электротепловые расчётные модели элементов конструкции трансформаторного оборудования / В.Ф. Иванков, А.В. Басова, Н.В. Шульга // Електротехніка та електроенергетика. – 2014. – №2. – С. 41-53.
- Traidia, A. Multiphysics modeling and numerical simulation of GTA weld pools [Электронный ресурс]. – Режим доступа: https:// pastel.archives-ouvertes.fr/pastel-00709055/

K.N. Marenich /Dr. Sci. (Eng.)/

Donetsk National Technical University (Donetsk)

I.Y. Chernov /Cand. Sci. (Eng.)/, Y.V. Zolotarov

Scientific-Research, Project-Designing and Technological Institute of Explosion-Proof and Mine Electrical Equipment (Donetsk)

document

C. 58-79.

8. Василенко, С.М. Основи тепломасообміну /

9. Сорока, Е.А. Теплоотдача в охлаждаю-

шевський // Київ: НУХТ, 2004. – 243 с.

С.М. Василенко, А.І. Українець, В.В. Олі-

щих каналах оболочки взрывозащищен-

ного трансформатора типа ТСВ / Взры-

возащищенное электрооборудование: сб.

науч. тр. УкрНИИВЭ. – Донецк, 1994. –

MODELING OF HEAT TRANSFER PROCESSES INSIDE THE SHELL OF AN EXPLOSION-PROOF TRANSFORMER SUBSTATION OF KTPV-1000 BY FINITE ELEMENTS METHOD

Background. Based on the general equation of convective heat transfer (Fourier – Kirchhoff equation), a mathematical model of heat transfer inside the shell of an explosion-proof mine transformer substation developed. The model is calculated by the finite elements method in SolidWorks Flow Simulation software environment. A comparative analysis of the obtained results and the data of experimental thermal studies of a KTPV-1000/6-1.2 substation performed.

Materials and/or methods. The substation model represented by high and low voltage windings, electrically insulating cylinders, magnetic core, yoke beams, explosion-proof sheath, and internal airspace. Volumetric heat generation of no-load losses and short circuit losses of the transformer in the nominal mode of operation at 115 °C taken as a source of heat flow. The boundary conditions on the outer wall of the shell preset by the heat transfer coefficient.

Results. The simulation results are comparable with experimental data. The maximum value of the relative error of air temperature in the upper 1/3 of the shell is Δ =7.9 %, – at the point of maximum overheating of the ventilation axial channel of the low voltage winding (phase B) Δ =11.6 %.

Conclusion. Shown that the presented calculation method is generally correct. The results of such a calculation can be used at the stage of preliminary design, for a preliminary assessment of the thermal state of the mine explosion-proof transformer substations.

И.Я. Чернов

Телефон:

Эл. почта:

Keywords: explosion-proof transformer substation, mathematical model, thermal field.

Сведения об авторах

К.Н. Маренич SPIN-код: 8632-8425 Author ID: 377905 ORCID iD: 0000-0002-6309-4986 Телефон: +380 (71) 301-98-61 Эл. почта: knm@donntu.org E.B. Золотарёв

Телефон: +380 (71) 412-10-54 Эл. почта: transformator76@inbox.ru

Статья поступила 17.10.2018 г. © К.Н. Маренич, И.Я. Чернов, Е.В. Золотарёв, 2018 Рецензент д.т.н., проф. Э.Г. Куренный

+380 (71) 348-03-55

kniot_i_tp@mail.ru

4(14)'2018